
Fixing the year 2038 problem

FOSDEM 2023
Wookey

wookey@wookware.org

2

The problem

● Time (time_t) on unix 32-bit systems is 32-bit signed int seconds
since 1st Jan 1970. Rolls over at 2147483647 to negative number.

● Happens at 2038-01-19 03:14:07 UTC. Next second is 1901-12-13
20:45:52 UTC

● This is slightly less than 15 years away
● There are other issues: Y2106 (unsigned 32-bit Epoch-based

times), Y2107 (FAT/vfat), Y2036 (unsigned 32-bit 1900-based RFC
868 times (NTP)) or Y9999 (four-digit years)

3

This session

● I am not much of an ‘expert’.
● Explain the problem
● Collect feedback/issues/things to check
● Test level of consensus
● Hopefully end with some sort of plan for a plan.

4

How big a problem?

● Real computing mostly 64 bit already
● Lots of cheap computing still 32 bit
● Cars, TVs, controllers (buildings, plant, IOT), cheap phones
● A lot of stuff still running in 2038 is already installed
● There will still be new things. We should fix them. Soon.
● A lot more OpenEmbedded/Android than binary distros.
● Debian has bigger problem than most

5

Who cares?

● riscv32, x32, loong32, arc already 64-bit time
● RHEL already dropped 32-bit arches
● armv5, i386, mips32 and ppc32 already close to obsolete
● Source distros ‘just’ rebuild:

openwrt/buildroot/yocto/gentoo/adelie
● Leaving debian armv7 (‘armhf’). Anyone else?

6

● Arnd Bergman and Deepa Dinamani – Kernel, 2017.
https://lwn.net/Articles/717076/

● Perl fixed 5.12 (works on 32-bit system support) (2010)
● Musl is fixed in 1.2 (2020): http://musl.libc.org/time64.html

(time_t always 64bit, but things can still run using old ABI)
● Glibc fixed in 3.34 (2021)
● Lots of other software fixed – how much is still broken?

Work so far

https://lwn.net/Articles/717076/
http://musl.libc.org/time64.html

7

Distro work

● Adelie (musl):
https://web.archive.org/web/20220301175235/https://wiki.adelielinux.org/wiki/Project:Ti
me64

● Gentoo: https://wiki.gentoo.org/wiki/Project:Toolchain/time64_migration
● OpenSuse: https://www.reddit.com/r/linux/comments/xjtf3q/in_the_year_2038/
● Ubuntu: Library analysis https://people.canonical.com/~vorlon/armhf-time_t/
● OpenEmbedded: Assorted patches
● Debian: Rebuild attempt in 2020 (too much broken)

Rebootstrap base (2022), ABI analysis

https://web.archive.org/web/20220301175235/https://wiki.adelielinux.org/wiki/Project:Time64
https://web.archive.org/web/20220301175235/https://wiki.adelielinux.org/wiki/Project:Time64
https://wiki.gentoo.org/wiki/Project:Toolchain/time64_migration
https://www.reddit.com/r/linux/comments/xjtf3q/in_the_year_2038/
https://people.canonical.com/~vorlon/armhf-time_t/

8

Glibc

● Glibc 3.34 – supports old and new.
● Does not force 64bit so other stuff just rebuilds
● File format changes: utmp, wtmp, btmp have a time_t in
● Qemu usermode (32 on 64) bust in 2.37 (patches exist)
● Sets FILE_OFFSET_BITS=64 if TIME_BITS=64

9

LFS (Large Filesystem Support) is involved

● Glibc 3.34 enforces _FILE_OFFSET_BITS=64 if _TIME_BITS=64
● _LARGEFILE_SOURCE enables both 32 and 64bit ABI
● _FILE_OFFSET_BITS=64 enables 64bit ABI only.
● LFS is similar transition to 64bit time_t in this regard

 10

Gnulib and autoconf

● gnulib automatically enables time64 support if the system
supports it.
– set gl_cv_type_time_t_bits_macro=no to stop it

● Autoconf 2.72 (Nov 2022) release tried to tie LFS and 64bit-
time. (Reverted).

11

ABIs and files

● ABI changes if time_t used in struct
● File and disk formats contain 32-bit times
● New ABI is just like any other ABI bump, but HUGE
● Supporting/transitioning old file formats important for

apps

12

Fundamental question

● Update existing architecture? (arm-linux-gnueabihf)
– Most efforts so far
– Easy for source distros
– Significant risk of breakage for binary distros
– Changes the ABI

● New ABI –> new triplet?
– More ‘correct’?
– Easier for binary distros? (Some stuff will break with new names)

● Some consensus would be good

13

Debian migration

● Just rebuilding against newer glibc doesn’t cause transition
something has to set _TIME_BITS=64 and _FILE_OFFSET_BITS=64

● Dpkg, glibc or gcc could set them (glibc best?).
● New arch/triplet is simpler (‘arm32’/arm_linux_gnuxxxx)
● Big transition like libc5 libc6 in existing arch/triplet→

Process exists but blocks migration on all arches.
● Minor-arch ABI transition example: long double changed

from 64-128bits on alpha, powerpc, sparc, s390 (2007)

14

How big a problem 2?

● 6429 packages of Debian’s 35960 have time_t in
● How many in public ABIs and file formats?
● 7 of bottom 85 libs have changed ABI
● Of 767 library packages: 209 analyser failed, 558 checked

82 changed ABI, 476 did not. (17%) (ubuntu tests)
So maybe 113 libs in transition?

● Mixing binaries worked fine in my tests so far.

15

What else?

● NFSv3 (might be signed, might not),ext3, XFS, cpio?
● INN has time_t in file format
● cpio uses 33bit (11 octal digits) for mtime. OK till 2174?
● 32-bit Wine
● What else will break? (in 2038?/on upgrade now?)

16

Questions

● What doesn’t build with 64bit time_t? Or LFS?
● Non-ABI issues?
● Things we should test?
● New triplet/arch or transition-in-place?
● Glibc - flag day/triplet/libdir/something else?
● Timescale?

17

Discussion

● distributions@lists.linux.dev
● https://subspace.kernel.org/lists.linux.dev.html

● Please join in if you are interested/worried/understand
specific issues.

mailto:distributions@lists.linux.dev
https://subspace.kernel.org/lists.linux.dev.html

 18

Modern C porting also implicated

● Implicit function defines are going away
● Errors from gcc14 and clang 16 (next year)
● https://wiki.gentoo.org/wiki/Modern_C_porting
● Implicit functions break glibc foo foo64 macros→
● Some configure tests depend on implicit functions

https://wiki.gentoo.org/wiki/Modern_C_porting

19

Tools

● Abigail-tools
● Abi-dumper
● ABI-compliance-checker:

 https://lvc.github.io/abi-compliance-checker/
● More?

https://lvc.github.io/abi-compliance-checker/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

