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Outline

 A bit of history
 Development changes
 New features
 Mainlining into Linux kernel

For technical details
 http://www.yaffs.net



  

What is YAFFS?

 Flash file system
 First developed for NAND, also used with NOR.
 Log structured
 Used in all sorts of applications: 

 From sewing machines to aerospace.
 Volume user: cell phones

 Multi-platform: Linux, WinCE, RTOSs, etc
 GPL2 or proprietary licensing available.



  

YAFFS1 History

 YAFFS1 Milestones
 Started in December 2001
 Core file system simulation working March 2002
 Rudimentary Linux operation April 2002
 First Linux release May 2002
 First WinCE use Sept 2002
 First YAFFS Direct release Jan 2003

 In 2001....
 512Bytes/page NAND was quite new
 32MiB flash was HUGE



  

YAFFS2

 End 2002, identified need for new approach.
 MLC NAND on the horizon
 Reduction in write flexibility

 No rewriting.
 Sequential page writing within a block

 Thus could no longer write deletion markers
 Thus needed to introduce a “flow of time”

 Potential performance advantage of reduced writes.
 Wider variety of flash parts and controllers

 More abstract NAND model.
 YAFFS1 backward compatibility



  

YAFFS2 History

 YAFFS2 Milestones
 Ideas sketched out in Nov 2002
 Work started in 2003.
 Working by end 2003
 Released to world 2004
 Checkpointing added May 2006
 Background gc added 2010



  

Code structure

 Modular sub-systems
 Portable core code (~13,000 loc)
 OS-specific wrapper code (~3500 loc)

 Developed in user-space, not kernel
 Way faster:

 Richer tools
 Plug & play testing with test wrappers.
 App. crashing is cheap



  

Code structure:2

 Unintended side effect
 Multi-OS support.

 One file system code base for Linux, WinCE, 
boot-loaders, RTOS and others.

 Perhaps the most ported FS code in existence.
 Alternative revenue stream.

 Helps fund Aleph One's GPL “core mission”.



  

Testing History

 Until mid 2008:
 Community oriented

 Limited internal testing.
 External parties provided significant testing until 

end 2007.

 Mid 2008 found some serious bugs
 Decided to implement extensive internal testing.

 Massive improvement in corner case robustness.
 New tests being added all the time
 Automatic tests running almost constantly



  

Testing

 Testing > 60% of development time
 Multi-faceted

 YAFFS Direct tests
 Linux in-kernel tests
 Fuzz testing

 Mostly simulated flash
 Way faster test cycling than real flash



  

Test Example

 Simulates a firmware update under power fail
 Cycle:

 Checks current file set OK.
 Writes new temp files with checksums
 Rename temp files over existing file set

 Simulate a power fail at any point
 Simulates many power failures per second.

 Improvement:
 Mid 2006: Fail within 200 cycles
 Sept 2006: Fail around 200k cycles.
 Now: Runs millions of cycles with no failure.



  

New features

 Background garbage collection
 xattrib support
 Improved MLC handling

 Block refreshing

 Faster
 Approx 50% faster reading/writing since Dec 2009
 Result of three different sets of changes.



  

Background garbage collection

 GC 'collects' free space and erases blocks
 Old GC

 Side-effect of writing
 Slows down writes

 Idea:
 Most of the time the FS is idle, just bursts of writes 

now and then.
 Goal: do most of GC while device is apparently idle

 Less GC when actually writing
 Writes faster.



  

Background GC challenges

 Overzealous GC does too much
 Increased flash wear
 Increased power consumption
 Can actually slow things down.

 Tuning can be hard
 Get the benefits without too much cost
 Keeping it simple
 Watch out for corner cases



  

Background GC tuning

 Based on erased space available vs free space
 Foreground GC in user write thread

 If erased < reserve then urgent GC
 If erased < ¼ free space then non-urgent GC
 If erased > ¼ then no GC

 Background GC in background thread
 If erased < ½ free space then faster GC
 If erased > ½ free space then slower GC

 



  

Background GC at work

Background GC while FS idle 

Red = free space
Green = erased space

✔ Erased space being freed up
✔ GC harder in the beginning
✔ GC slows down
✔ Writes happen faster
✔Better user experience

Delete some files

Fast background GC until 50% of free is erased

50% erased after approx 5 mins

Slow GC



  

xattrib support

 Needed for some security etc.
 Limited support to cover most usage scenarios.

 1500 bytes of xattrib/file in 2k page NAND

 Cheap implementation
 Store xattrib data in unused part of object header
 Very little overhead.



  

Block refreshing

 NAND flash “leaks”
 Bit-rot over time & use
 Excessive reading can even cause problems
 Particularly bad for MLC

  Solution:
 Occasionally rewrite oldest block.

 Low cost
 Mainly done by background



  

Lies, damn lies and benchmarks

Real-world performance depends on many 
variables:
 Hardware speed
 File system state
 Operation sequences
 Usage patterns

So...
 Your mileage may vary
 Test with typical usage patterns if possible



  

Balloon board test

Busybox script:
 Write 10k files, some fresh, some overwrites
 Delete some files
 Sleep
 Repeat  x3
 Measure system time

Identical kernel, just switch yaffs code



  

Results

Code from September 
2009: 1378s

Code from October 
2010: 840s

Average speed up: 64%
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Future features

 Block summaries
 Save tags in last chunk in block
 Scan reads reduced by over 90%

 Faster mounting after unclean shutdown
 Potentially store other useful info.

 Use background thread for more functions
 eg. Background data verification for MLC.

 Improved MLC error handling
 Improved caching



  

Why mainline?

 Some community aversion to patching
 It is really simple to patch in yaffs:

 untar snapshot 
 ./patch-ker.sh c m /linux-dir

 But:
 Distrust from some quarters.
 Problem of being a kernel outsider.
 Keeping synced with VFS changes is hard.

 Mainlining funded by CELF & Google.
 Thanks!



  

Mainlining tasks: 1

 Single kernel version of VFS glue code: done
 Existing VFS glue code is multi-version. 
 Lots of conditional compilation and obsolete code.
 Streamlined single-kernel variant for mainlining.
 Multi-kernel version still kept for patching.

#if (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 17))
static int yaffs_sync_fs(struct super_block *sb, int wait)
#else
static int yaffs_sync_fs(struct super_block *sb)
#endif
{



  

Mainlining tasks: 2

 Split up code: first pass done, maybe more
 Makes more manageable files
 Remove confusing clutter (eg. WinCE)
 yaffs1 and yaffs2 specific code partitioned

 Kernel friendly re-symboling: work in progress
 yaffs_ScanBackwards → yaffs_scan_backwards
 Mainly scripted to limit clerical errors.

 Working with kernel team: not yet started



  

That's all folks

Thanks to:
 Toby Churchill Ltd
 Brightstar Engineering
 CELF
 Google
 The community

Further info: http://www.yaffs.net
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