

YAFFS Update

Wookey & Charles Manning
October 2010

Outline

 A bit of history
 Development changes
 New features
 Mainlining into Linux kernel

For technical details
 http://www.yaffs.net

What is YAFFS?

 Flash file system
 First developed for NAND, also used with NOR.
 Log structured
 Used in all sorts of applications:

 From sewing machines to aerospace.
 Volume user: cell phones

 Multi-platform: Linux, WinCE, RTOSs, etc
 GPL2 or proprietary licensing available.

YAFFS1 History

 YAFFS1 Milestones
 Started in December 2001
 Core file system simulation working March 2002
 Rudimentary Linux operation April 2002
 First Linux release May 2002
 First WinCE use Sept 2002
 First YAFFS Direct release Jan 2003

 In 2001....
 512Bytes/page NAND was quite new
 32MiB flash was HUGE

YAFFS2

 End 2002, identified need for new approach.
 MLC NAND on the horizon
 Reduction in write flexibility

 No rewriting.
 Sequential page writing within a block

 Thus could no longer write deletion markers
 Thus needed to introduce a “flow of time”

 Potential performance advantage of reduced writes.
 Wider variety of flash parts and controllers

 More abstract NAND model.
 YAFFS1 backward compatibility

YAFFS2 History

 YAFFS2 Milestones
 Ideas sketched out in Nov 2002
 Work started in 2003.
 Working by end 2003
 Released to world 2004
 Checkpointing added May 2006
 Background gc added 2010

Code structure

 Modular sub-systems
 Portable core code (~13,000 loc)
 OS-specific wrapper code (~3500 loc)

 Developed in user-space, not kernel
 Way faster:

 Richer tools
 Plug & play testing with test wrappers.
 App. crashing is cheap

Code structure:2

 Unintended side effect
 Multi-OS support.

 One file system code base for Linux, WinCE,
boot-loaders, RTOS and others.

 Perhaps the most ported FS code in existence.
 Alternative revenue stream.

 Helps fund Aleph One's GPL “core mission”.

Testing History

 Until mid 2008:
 Community oriented

 Limited internal testing.
 External parties provided significant testing until

end 2007.

 Mid 2008 found some serious bugs
 Decided to implement extensive internal testing.

 Massive improvement in corner case robustness.
 New tests being added all the time
 Automatic tests running almost constantly

Testing

 Testing > 60% of development time
 Multi-faceted

 YAFFS Direct tests
 Linux in-kernel tests
 Fuzz testing

 Mostly simulated flash
 Way faster test cycling than real flash

Test Example

 Simulates a firmware update under power fail
 Cycle:

 Checks current file set OK.
 Writes new temp files with checksums
 Rename temp files over existing file set

 Simulate a power fail at any point
 Simulates many power failures per second.

 Improvement:
 Mid 2006: Fail within 200 cycles
 Sept 2006: Fail around 200k cycles.
 Now: Runs millions of cycles with no failure.

New features

 Background garbage collection
 xattrib support
 Improved MLC handling

 Block refreshing

 Faster
 Approx 50% faster reading/writing since Dec 2009
 Result of three different sets of changes.

Background garbage collection

 GC 'collects' free space and erases blocks
 Old GC

 Side-effect of writing
 Slows down writes

 Idea:
 Most of the time the FS is idle, just bursts of writes

now and then.
 Goal: do most of GC while device is apparently idle

 Less GC when actually writing
 Writes faster.

Background GC challenges

 Overzealous GC does too much
 Increased flash wear
 Increased power consumption
 Can actually slow things down.

 Tuning can be hard
 Get the benefits without too much cost
 Keeping it simple
 Watch out for corner cases

Background GC tuning

 Based on erased space available vs free space
 Foreground GC in user write thread

 If erased < reserve then urgent GC
 If erased < ¼ free space then non-urgent GC
 If erased > ¼ then no GC

 Background GC in background thread
 If erased < ½ free space then faster GC
 If erased > ½ free space then slower GC

Background GC at work

Background GC while FS idle

Red = free space
Green = erased space

✔ Erased space being freed up
✔ GC harder in the beginning
✔ GC slows down
✔ Writes happen faster
✔Better user experience

Delete some files

Fast background GC until 50% of free is erased

50% erased after approx 5 mins

Slow GC

xattrib support

 Needed for some security etc.
 Limited support to cover most usage scenarios.

 1500 bytes of xattrib/file in 2k page NAND

 Cheap implementation
 Store xattrib data in unused part of object header
 Very little overhead.

Block refreshing

 NAND flash “leaks”
 Bit-rot over time & use
 Excessive reading can even cause problems
 Particularly bad for MLC

 Solution:
 Occasionally rewrite oldest block.

 Low cost
 Mainly done by background

Lies, damn lies and benchmarks

Real-world performance depends on many
variables:
 Hardware speed
 File system state
 Operation sequences
 Usage patterns

So...
 Your mileage may vary
 Test with typical usage patterns if possible

Balloon board test

Busybox script:
 Write 10k files, some fresh, some overwrites
 Delete some files
 Sleep
 Repeat x3
 Measure system time

Identical kernel, just switch yaffs code

Results

Code from September
2009: 1378s

Code from October
2010: 840s

Average speed up: 64%

1 2 3 4

0

0.5

1

1.5

2

2.5

R
e

la
tiv

e
 p

e
rf

o
rm

a
n

ce

Future features

 Block summaries
 Save tags in last chunk in block
 Scan reads reduced by over 90%

 Faster mounting after unclean shutdown
 Potentially store other useful info.

 Use background thread for more functions
 eg. Background data verification for MLC.

 Improved MLC error handling
 Improved caching

Why mainline?

 Some community aversion to patching
 It is really simple to patch in yaffs:

 untar snapshot
 ./patch-ker.sh c m /linux-dir

 But:
 Distrust from some quarters.
 Problem of being a kernel outsider.
 Keeping synced with VFS changes is hard.

 Mainlining funded by CELF & Google.
 Thanks!

Mainlining tasks: 1

 Single kernel version of VFS glue code: done
 Existing VFS glue code is multi-version.
 Lots of conditional compilation and obsolete code.
 Streamlined single-kernel variant for mainlining.
 Multi-kernel version still kept for patching.

#if (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 17))
static int yaffs_sync_fs(struct super_block *sb, int wait)
#else
static int yaffs_sync_fs(struct super_block *sb)
#endif
{

Mainlining tasks: 2

 Split up code: first pass done, maybe more
 Makes more manageable files
 Remove confusing clutter (eg. WinCE)
 yaffs1 and yaffs2 specific code partitioned

 Kernel friendly re-symboling: work in progress
 yaffs_ScanBackwards → yaffs_scan_backwards
 Mainly scripted to limit clerical errors.

 Working with kernel team: not yet started

That's all folks

Thanks to:
 Toby Churchill Ltd
 Brightstar Engineering
 CELF
 Google
 The community

Further info: http://www.yaffs.net

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

