

YAFFS Update

Wookey & Charles Manning
October 2010

Outline

 A bit of history
 Development changes
 New features
 Mainlining into Linux kernel

For technical details
 http://www.yaffs.net

What is YAFFS?

 Flash file system
 First developed for NAND, also used with NOR.
 Log structured
 Used in all sorts of applications:

 From sewing machines to aerospace.
 Volume user: cell phones

 Multi-platform: Linux, WinCE, RTOSs, etc
 GPL2 or proprietary licensing available.

YAFFS1 History

 YAFFS1 Milestones
 Started in December 2001
 Core file system simulation working March 2002
 Rudimentary Linux operation April 2002
 First Linux release May 2002
 First WinCE use Sept 2002
 First YAFFS Direct release Jan 2003

 In 2001....
 512Bytes/page NAND was quite new
 32MiB flash was HUGE

YAFFS2

 End 2002, identified need for new approach.
 MLC NAND on the horizon
 Reduction in write flexibility

 No rewriting.
 Sequential page writing within a block

 Thus could no longer write deletion markers
 Thus needed to introduce a “flow of time”

 Potential performance advantage of reduced writes.
 Wider variety of flash parts and controllers

 More abstract NAND model.
 YAFFS1 backward compatibility

YAFFS2 History

 YAFFS2 Milestones
 Ideas sketched out in Nov 2002
 Work started in 2003.
 Working by end 2003
 Released to world 2004
 Checkpointing added May 2006
 Background gc added 2010

Code structure

 Modular sub-systems
 Portable core code (~13,000 loc)
 OS-specific wrapper code (~3500 loc)

 Developed in user-space, not kernel
 Way faster:

 Richer tools
 Plug & play testing with test wrappers.
 App. crashing is cheap

Code structure:2

 Unintended side effect
 Multi-OS support.

 One file system code base for Linux, WinCE,
boot-loaders, RTOS and others.

 Perhaps the most ported FS code in existence.
 Alternative revenue stream.

 Helps fund Aleph One's GPL “core mission”.

Testing History

 Until mid 2008:
 Community oriented

 Limited internal testing.
 External parties provided significant testing until

end 2007.

 Mid 2008 found some serious bugs
 Decided to implement extensive internal testing.

 Massive improvement in corner case robustness.
 New tests being added all the time
 Automatic tests running almost constantly

Testing

 Testing > 60% of development time
 Multi-faceted

 YAFFS Direct tests
 Linux in-kernel tests
 Fuzz testing

 Mostly simulated flash
 Way faster test cycling than real flash

Test Example

 Simulates a firmware update under power fail
 Cycle:

 Checks current file set OK.
 Writes new temp files with checksums
 Rename temp files over existing file set

 Simulate a power fail at any point
 Simulates many power failures per second.

 Improvement:
 Mid 2006: Fail within 200 cycles
 Sept 2006: Fail around 200k cycles.
 Now: Runs millions of cycles with no failure.

New features

 Background garbage collection
 xattrib support
 Improved MLC handling

 Block refreshing

 Faster
 Approx 50% faster reading/writing since Dec 2009
 Result of three different sets of changes.

Background garbage collection

 GC 'collects' free space and erases blocks
 Old GC

 Side-effect of writing
 Slows down writes

 Idea:
 Most of the time the FS is idle, just bursts of writes

now and then.
 Goal: do most of GC while device is apparently idle

 Less GC when actually writing
 Writes faster.

Background GC challenges

 Overzealous GC does too much
 Increased flash wear
 Increased power consumption
 Can actually slow things down.

 Tuning can be hard
 Get the benefits without too much cost
 Keeping it simple
 Watch out for corner cases

Background GC tuning

 Based on erased space available vs free space
 Foreground GC in user write thread

 If erased < reserve then urgent GC
 If erased < ¼ free space then non-urgent GC
 If erased > ¼ then no GC

 Background GC in background thread
 If erased < ½ free space then faster GC
 If erased > ½ free space then slower GC

Background GC at work

Background GC while FS idle

Red = free space
Green = erased space

✔ Erased space being freed up
✔ GC harder in the beginning
✔ GC slows down
✔ Writes happen faster
✔Better user experience

Delete some files

Fast background GC until 50% of free is erased

50% erased after approx 5 mins

Slow GC

xattrib support

 Needed for some security etc.
 Limited support to cover most usage scenarios.

 1500 bytes of xattrib/file in 2k page NAND

 Cheap implementation
 Store xattrib data in unused part of object header
 Very little overhead.

Block refreshing

 NAND flash “leaks”
 Bit-rot over time & use
 Excessive reading can even cause problems
 Particularly bad for MLC

 Solution:
 Occasionally rewrite oldest block.

 Low cost
 Mainly done by background

Lies, damn lies and benchmarks

Real-world performance depends on many
variables:
 Hardware speed
 File system state
 Operation sequences
 Usage patterns

So...
 Your mileage may vary
 Test with typical usage patterns if possible

Balloon board test

Busybox script:
 Write 10k files, some fresh, some overwrites
 Delete some files
 Sleep
 Repeat x3
 Measure system time

Identical kernel, just switch yaffs code

Results

Code from September
2009: 1378s

Code from October
2010: 840s

Average speed up: 64%

1 2 3 4

0

0.5

1

1.5

2

2.5

R
e

la
tiv

e
 p

e
rf

o
rm

a
n

ce

Future features

 Block summaries
 Save tags in last chunk in block
 Scan reads reduced by over 90%

 Faster mounting after unclean shutdown
 Potentially store other useful info.

 Use background thread for more functions
 eg. Background data verification for MLC.

 Improved MLC error handling
 Improved caching

Why mainline?

 Some community aversion to patching
 It is really simple to patch in yaffs:

 untar snapshot
 ./patch-ker.sh c m /linux-dir

 But:
 Distrust from some quarters.
 Problem of being a kernel outsider.
 Keeping synced with VFS changes is hard.

 Mainlining funded by CELF & Google.
 Thanks!

Mainlining tasks: 1

 Single kernel version of VFS glue code: done
 Existing VFS glue code is multi-version.
 Lots of conditional compilation and obsolete code.
 Streamlined single-kernel variant for mainlining.
 Multi-kernel version still kept for patching.

#if (LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 17))
static int yaffs_sync_fs(struct super_block *sb, int wait)
#else
static int yaffs_sync_fs(struct super_block *sb)
#endif
{

Mainlining tasks: 2

 Split up code: first pass done, maybe more
 Makes more manageable files
 Remove confusing clutter (eg. WinCE)
 yaffs1 and yaffs2 specific code partitioned

 Kernel friendly re-symboling: work in progress
 yaffs_ScanBackwards → yaffs_scan_backwards
 Mainly scripted to limit clerical errors.

 Working with kernel team: not yet started

That's all folks

Thanks to:
 Toby Churchill Ltd
 Brightstar Engineering
 CELF
 Google
 The community

Further info: http://www.yaffs.net

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

