
Wookey 2021.07.12

Open Source Fundamentals

Wrote first Free Software in 1991 (survex, GPL2)

Armlinux 1999
Debian Developer 2000
Guide to ARMLinux for developers 2001
Emdebian 2004-2014
Debconf 2005

Linaro at startup 2010
AArch64 bootstrap

Who is Wookey?

4 Freedoms:
1) Run
2) Copy
3) Modify
4) Share

FLOSS is Free, Libre and Open Source software.
Both a more efficient development model, and a
philosophical movement.
It's an ecosystem – not planned: survival of the fittest

The philosophy of free software

What is open source?

• The term Open Source can be used to mean several
different things.
o In general it refers to software being developed in the open, with source

code available for people to build their own modified version.
o Strictly means things licenced under an OSI (Open Source Initiative)-

approved licence
o Same concept in other fields: 'Open Source Hardware', 'Open Source

Buildings'
o It is not 'public domain' or 'No copyright'.

• Sometimes used for things that aren't actually FLOSS
 visible, but not redistributable source ('Shared source')
 'Open-core' projects (Gitlab, Elastic, MongoDB)

• There are two dominating philosophies.
 'Open Source' emphasises the development model and

practical advantages
 'Free Software' (Libre Software) emphasises the 4

freedoms as an intrinsic good

 But it's actually all the same software. All Free Software
is Open Source. All Open Source is Free Software
(obscure exceptions exist: e.g NASA OS Agreement)

https://www.gnu.org/philosophy/open-source-misses-the-point.en.html

https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licences#Approvals

What is open source?

https://www.gnu.org/philosophy/open-source-misses-the-point.en.html
https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licences#Approvals

• 60s. All software effectively free
• 70s,80s Commercial Unices
• 1984 GNU project
• 1985 Free Software Foundation
• 1991 Linux kernel
• 1993 Slackware, Debian, Red Hat

https://en.wikipedia.org/wiki/File:Linux_Distribution_Timeline.svg

• 1994 Debian Free Software Guidelines
• 1997 ‘Open Source’
• 1998 OSI, DFSG->OSI definition

• 20+ years of acceptance and adoption, but some ructions
in last couple of years (ethics, open core)

History

https://en.wikipedia.org/wiki/File:Linux_Distribution_Timeline.svg

‘Open Source’ term coined by Christine Petersen (Foresight Institute) late 1997.

Group wanted less confusing business-friendly name. (Gratis vs Libre)

Todd Anderson, Tim Oreilly, Red-Hat Founders

Controversial at the time.

OSI (Open Source Institute) set up by Eric S Raymond and Bruce Perens

https://opensource.com/article/18/2/coining-term-open-source-software

‘Open Source’ origins

https://opensource.com/article/18/2/coining-term-open-source-software

1) Free Redistribution
2) Source Code
3) Derived Works
4) Integrity of The Author's Source Code
5) No Discrimination Against Persons or Groups
6) No Discrimination Against Fields of Endeavor
7) Distribution of License
8) License Must Not Be Specific to a Product
9) License Must Not Restrict Other Software
10)License Must Be Technology-Neutral

 https://opensource.org/osd-annotated

● Essentially Debian Free Software Guidelines + #10

Open Source Definition

https://opensource.org/osd-annotated
https://www.debian.org/social_contract#guidelines

• Open source development lets us pool our resources
together to do the things everyone needs.
o Without preventing anyone from specializing in areas where they think

there is commercial opportunity
o Commoditization is accelerated.

• Having more commonly useful, hackable, software out
there lowers the barrier of innovation for everyone.

• Allows you to just get stuff done: you don't have to wait for
another person/company to fix/do something.

So what’s the point?

• It’s a community, not a company
• You can’t tell other people what to do, just ask/persuade
• Roadmaps are organic, not decreed - ‘do-ocracy’
• Project managers do not understand

‘Which week will it be upstream?’

• Your responsibility for the code does not end when
Upstream

People will come back and ask you to fix it if it breaks,
or expect you to help out if they want to change it.

How does open source work?

• Expect the unexpected.
o Catering for only the scenarios you predict means that only those things

are likely to happen.
o Who knows what crazy thing some bored student can come up with when

given full opportunity to play around?
o Wide range of codepaths tested

• Software that doesn't come with a load of aggravation like
flexlm licence servers/nagware/adware/bundling.

• Allows innovation – free software made google, amazon,
facebook, yahoo, wikipedia, etc possible

Eben Moglen - ‘Innovation under Austerity’

What does open source give you

https://www.youtube.com/watch?v=LUty2hGo6oM

• A community is composed of:
 Academics (students, scientists, teachers)
 Hobbyists
 Workers (from companies or freelance)

• The community takes predominance over individuals
o → Consensus is the goal
o Collaboration is the cornerstone of Open Source

Understanding the community

• Work that benefits the community.
o Patches that fit into the existing codebase.
o And do not break existing code/other architectures.
o Remember: nobody has to take your stuff!

• Interesting stuff
o Features they had not thought of
o Work no-one else knows how to do (or it would take them a lot longer)

• Information
o NDA-only documents are a hostile act.

What does the community want from you?

• Their work!
o Code, ideas, testing, bug reports, bugfixes

• Their expertise
o They know more about their software than you do (usually!)
o Upstream can often implement something in hours that would take you

days or weeks. Build good relationships

o Building standing and relationships is effective – knowing who to find on
an IRC channel can be worth months of corporate negotiation.

What do you want from the community?

Collaboration relies on tools
• Development

 Distributed version control system: git
 Compilation tools : gcc, make
 Debugging: gdb
 Etc …

• Communication
o Discussion: Mailing lists, Discourse
o Chat: IRC, Matrix/Riot/Element
o Text sharing: pastebin
o Bug trackers: BTS, Bugzilla, Trac, Gitlab, Github

• Find out how to interact before blundering in

Collaboration

• Find out how to interact before blundering in

• Understand the actors in the Project

• Be prepared then send your first patch

Don’t be scared

• Comments are always a good thing, that means the
changes raised some interest

• Comments can be tough: stay factual, stick to the
technical aspect and give numbers to support your
position

• Comments can spot an issue or a misdesign you missed

• Maintability is the priority, you may be asked to redesign
everything

Don’t be offended

• Comments can take some time: be patient

• There is no schedule / no deadline

• The community may be busy

• There is no obligation to merge the change

Don’t be demanding

• The changes must be designed as part of the community,
not as an individual

• Changes for the purpose of one group of persons or a
company have 100% chance to fail to be merged

• Working in the Open Source, is working as part of a
community

Don’t be selfish

• Do not ask if you can ask a question - just ask the
question

• Do not ask individual people, unless you know that person
is the only one who has the answer. Especially do not ask
in private chat.

• Try to stay on-topic for the channel

Rules of engagement - IRC

• Mailing lists can differ a lot in how they want
communication to happen

 Some lists want all patches sent as attachments, some want patches to
never be sent as attachments, some want only patches sent with git-
format-patch / git-send-email.

 Most lists loathe HTML formatted email and top-posting
 Some lists refuse email with automatically added legal disclaimers.
 If there is time, subscribe to the mailing list and read the postings for a

few weeks, to learn the etiquette of that particular list.
 Failing that, read through some of the list archives.

• But, like irc, do not contact individuals directly off-list
 Even if you know they are the only one to have the information you are

after.
 Questions answered in the conversation will be logged in an archive if

on the list.

Rules of engagement – Mailing Lists

• Always search for the answer first (DDG, google, baidu)
 Even if the hits are not relevant, or you do not understand them,

showing people that you have made that effort makes them a lot more
likely to want to help.

• Provide lots of information
 Preferably as a Short, Self Contained, Correct (Compilable), Example -

http://sscce.org/
 People who are helping you for free will not put a lot of effort into trying

to find out what you are actually asking.

Rules of engagement - General

Forking

Always an option.
 Usually born of frustration

 Slowness, Direction, Process
 Can dissipate effort/resources, but

sometimes effective/necessary.

Examples
• XFree86

Essentially replaced by Xorg

• OpenOffice.org
Competing forks: Libreoffice and Apache Openoffice

• FFmpeg
Libav attemped replacement fork, but FFmpeg continued.

 EGCS

• The GNU Compiler Collection (GCC) started its public
development in 1987.
o Being a Copyleft project, all users could modify the source code.

• Developers found it difficult to influence the central
development, so created a fork of the project and called it
EGCS.
o EGCS ran from August 1997 until July 1999. The existing GCC project

accepted that EGCS had a more productive community and scalable
development process.

o EGCS ended up “supplanting” the existing GCC, the projects merged
back together, and what had been EGCS became released as GCC 2.95.

Forking - Historical example - GCC/EGCS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

